
S.CUnfITY CLASSIFICATION Of T-IS PAGE (*,On De. Ent.eed)

REPOR DOCMENTTIONPAGEREAD IN4STRUCTION4S
BEFORE COMPLETIG43 FORM

1. REPORT NUM9ER 1. GOVT ACCESSION NO. I. RECIPIENT'S CATALOG HUMDER

NW-LIS-89-12-07 t

TITLa (".d SubrIfo) S. TYPE OF REPORT & PERIOD COVERED

WireLisp: Combining Graphics and Procedures Technical

in a Circuit Specification Language 4. PERFORMING O0. IEPORT NUMBER

AUTHOR(*) 4. CONTRACT OR GRANT NUMSER(e)

o Carl Ebeling, Zhanbing Wu N0OO14-88-K-0453

1 " ,PERFORMING ORGANIZATION NAME AND ,L.,',,I 0. R,,A 9M,EME.P OJECT. TASK

Northwest Laboratory for Integrated Systems A a WORK UN4T UM9ERS

S University of Washington
Dept. of Comp. Science, FR-35 Seattle, WA 9819

I. CONTROLLING OFFICE NAME AND AOOnsES IS. REPORT OATE

DARPA-ISTO December 1989

1400 Wilson Boulevard IS. NUM.ER OF PAGES
Arlnto~dn. VA 22209 _______________

14. AO ENCY NAME 0 AODRESS(I different from Controlling Office) I. SECURITY CLASS. (of thio retopr)

Office of Naval Research - ONR Unclassified
Information Systems Program - Code 1513: CAF

800 North Quincy Street Is*. DECL ASSIFICATION/OWNGRADINO
Arlington, VA 22217 SCHEDULE

ig. DISTRIBUTION STATEMENT (of thi. Report)

Distribution of this report is unlimited. D T IC
.,. APR 2 01990

17. DISTRIBUTION STATIEMIENT (of th abtatetrdIn Block 01990ifeet rm ele E
1S. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cmnue en revers, side II neceeoery and Identify by block number)

Lisp, TLisp, Graphical description, procedural description,

VLSI circuits, schematic, parametrized schematic.

20. AllSTRACT (Cenlnue on reves @Ide If neceoeer and Idenify by block number)

WireLisp is a language that incorporates both procedural and graphical
constructs for describing the structure of complex circuits. This
combination provides both the clarity of graphical representation and
the expressiveness of a procedural description. This paper describes
how this is done in a conceptually simple way by representing
procedural information graphically. WireLisp is built on Lisp which

Continued on back page....

O I JAN '7 1473 EDITION OF I NOV 6S IS O1SOLETE
S/N 0102.LF-014.6601

SECURITY CLASSIFICATION OF THiS PAGE (W~hen Dote Ehtfredj

#20 ABSTRACT

(Continued from front page)

allows the designer to extend the language with arbitrary functions.
WireLisp can be used to generate a variety of different target output
descriptions, and allows the incorporation of other kinds of
descriptions such as behavioral and physical descriptions. WireLisp
is implemented in TLisp and has been used to describe a complex
(130,000 transistor) VLSI chip design.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justlficatio

By
Distribution/

Availability Codes

Avail aad/or

Dist Special

DEPARTMENT OF COMPUTER SCIENCE

University of Washington

Seattle 98195

90 04 18 06c)

WireLisp: Combining Graphics and Procedures
in a Circuit Specification Language

Carl Ebeling and Zhanbing Wu

Technical Report #89-12-07

Department of Computer Science and Engineering, FR-35
University of Washington, Seattle, WA 98195 USA

!(

WireLisp: Combining Graphics and Procedures
in a Circuit Specification Language

Carl Ebeling Zhanbing Wu

Department of Computer Science and Engineering
University of Washington

Seattle, Washington

ABSTRACT ics. By contrast, procedural descriptions can be written in terms
of system parameters to adjust to new values without modifica-

WireLisp is a language that incorporate- both procedural and tion. Thus procedurally based descriptions can efficiently specify
graphical constructs for describing the structure of complex cir- the large, regular circuits from which large digital systems are
cuits. This combination provides both the clarity of a graphical constructed.
representation and the expressiveness of a procedural descrip- Unfortunately, procedural descriptions, while expressive, are
tion. This paper describes how this is done in a conceptually obscure. That is, the structure of a circuit is not immediately
simple way by representing procedural information graphically. obvious from a procedural description. Both writing and un-
WireLisp is built on Lisp which allows the designer to extend the derstanding procedural descriptions can be very difficult. The
language with arbitrary functions. WireLisp can be used to gen- approach of some schcmatic systems is to allow limited proce-
erate a variety of different target output descriptions, and allows dural constructs in circuit drawings. For example, arrays might
the incorporation of other kinds of descriptions such as behav- be used as a limited form of iteration to generate several copies
ioral and physical descriptions. WireLisp is implemented in T of a device or a signal. Parameters may be allowed in this con-
Lisp and has been used to describe a complex (130,000 transis- text to allow differently sized components. While this increases
tor) VLSI chip design. the expressiveness of schematic drawings, it is only 'in a limited

op,- I) 9 form that corresponds to syntactic textual substitution. Without
variables, conditionals and general iteration many circuits can be

Introduction described only inefficiently.
WireLisp is a language for describing the structure of a digital The goal of WireLisp is to incorporate full procedural power
system. Structure refers to the relationship between the elements into graphical descriptions. Since it is diflicult to predict al the
of a system and is easiest to represent and understand graphi- constructs a user will need, WireLisp imposes no restrictions and
cally. The common representation of circuits is thus a schematic includes the full range available in Lisp. Indeed, the user is free
representation corresponding directly to the structure of the cir- to define and use new functions. Whether a circuit is described
cuit. The concept of hierarchy is very useful in describing circuits graphically or procedurally is a decision left to the designer who
and can be incorporated directly into schematic descriptions by can choose the appropriate approach based on the type of cir-
allowing subcircuits comprising related modules to be combined cuit being described. Moreover, procedures and graphics can be
into a single abstract component. This abstraction mechanism re- freely intermixed. That is, Lisp expressions can be embedded in
duccs the amount of information required to understand a circuit graphic descriptions and graphic descriptions embedded in Lisp
description at any one level by hiding information within abstract expressions. This allows descriptions that are highly expressive,
components. Abstraction extends the designer's grasp by remov- yet easily specified and understood.
ing unnecessary detail and reduces the interaction between parts The underlying model of WireLisp uses procedures to de-
of a system by isolating that detail. Combining hierarchy with scribe how devices are constructed. A device procedure is invoked
graphical constructs provides a very intuitive and structured way to create an instance of the device, which may vary according to
to describe circuits and most modern schematic drawing systems the parameters passed to the procedure. An example of the def-
incorporate hierarchy, inition of a device called treecomp is given in Figure 1. This

Although graphical descriptions are clear, they are not very device compares two N-it numbers using a recursive divide and
expressive. That is, there are many conceptually simple circuits conquer approach. While this description relies heavily on proce-
for which graphical descriptions are very inefficient. For example, dural constructs, the resulting circuit structure is quite obvious
describing a 32-bit register as a collection of 32 flip-flops requires from the circuit drawing.
a large, repetitive schematic. The procedural concept of itera-
tion is a much more expressive way to describe this circuit. The . Device ce s are pic ed ui a D ed-utor, but they can also be produced by other CAD tools such
graphical description of a large decoder is also unwieldy as the as logic synthesis programs. Thus one device may be described
circuitry for each output is slightly different and cannot be sim- graphically while another described using a behavioral descrip-
ply replicated within the drawing. However, this circuitry can be tion which is converted into a WireLisp procedure by a synthesis
succinctly described using iteration, conditionals and the ability tool such as a PLA or multi-level logic generator. The output pro-
to perform computation on the iteration variable. Graphical de- duced by a WireLisp program is also flexible since it is produced
scriptions are also "brittler; simple changes in the parameters of a by the device procedures themselves. Although device libraries
system can require very time-consuming changes to the schemat- can be provided for common devices and technologies, the user

'This research was supported by the Defeae Advanced Research ProJects can easily produce whatever output is desired. WireLisp provides
Agency, DARPA Contract #N00014-O-K-0453, by NSF Grant #CCR- a structural framework for specifying a system as a collection of
8657ss9, and IBM Contract #57-655490. components described in different ways.

Devices are either composite or leaf devices. Composite de-
vices are comprised of other devices while leaf devices are prim-
itive devices without components. An instance of a composite
device is constructed by first invoking the device procedures ofaccess 15, ISUS 1. I }

dcccl Lut fali Gil LIN aOZT2 its components and then connecting the resulting instances to-

(If gether. Leaf devices have no component device procedures to
,:. tr l/ N 2))) Idivia.M invoke, but instead perform actions such as writing the appro-

priate description of the device to an output file.
Devices are connected together via named signals which cor-

respond to wires in the actual circuit. These signals are connected
to devices via signal parameters which correspond to the termi-

- A., • .. nals of the physical device. When a device procedure is called.
, .- !A.M •.N each signal parameter is bound to the signal in the environment
E_ -- GT *LT of the device to which the terminal is connected. Thus devices

(are interconnected by connecting them to common signals.

lh , Order half , zorder half Devices may also have general parameters which describe
0 Fwhich instance of a family of devices is to be constructed. Op-

tj " AIOH~A a tional parameters with default values are also provided to reduce
the amount of information required in the circuit description.
In Figure 1, N is a general parameter indicating the size of the

Vnumbers being compared.
A complete hierarchical WireLisp description becomes a pro-

gram with nested procedure calls corresponding to the circuit
hierarchy. This program is executed to produce an output de-
scription which depends on the side effects of the procedures
during program execution. For example, if each leaf device pro-
cedure writes a description of itself to an output file, the result

, GT -T2 ICQJ • z0will be a flat netlist of the circuit. On the other hand, the pro-
S aced ures.might construct an in-core'datA scructire corremponding
LT- !90 CT cedur

to the circuit, or make entries into a design database. The result
of execution is thus defined by the user, although libraries can

Figure 1: A WireLisp Drawing be provided for primitive devices in common target technologies
and output description formats.

Related Work Drawing Device Procedures

cir- Although in pripriple the designer can write device procedures
Programming languages have been used before to describe cir- directly, the intent of WireLisp is for these procedures to be de-
cults, notably the use of Lisp in netlist (12] and DPL[4]. WireLisp scribed in circuit drawings similar to schematics. Typically, most

is similar to netlist in its use of procedure hierarchy and its def- of a circuit can be described graphically, with conditionals and

inition of device connections via parameters. However, netlist

is purely procedural and is unwieldy for representing complex iteration used as required. However, even procedural constructs

systems. Moreover, netlist has only a very primitive notion of can often be represented graphically as shown in Figure 2. Here

signal structure that prevents information hiding. the if form is represented by a pseudo-device which acts as a

Both graphically and procedurally based VLSI layout systems compile-time multiplexor conditioned by the variable i: The first

have been described, but little has been done to incorporate both section of the shift register is connected to an input SI instead

types of description in the same specification. Some systems such of the output of the previous section.

as Mocha Chip(1O and WIN[l] use both types of description in
the specification of chip layout, but they cannot be intermixed
at a fine-grained level. 5511.L ph2.L

Xerox PARC has recently produced a circuit specification sys-
tem that incorporates both graphics and programs[2, 3] that is . . r
similar in philosophy to WireLisp. The mechanism in WireLisp is
conceptually simpler which allows extensions to be defined more ph " p.h.2.

easily. WireLisp also intertwines the graphical and procedural
constructs more closely which yields specifications that are more
expressive and self-apparent. Figure 2: A graphical form of the Lisp if conditional.

The WireLisp Model
Each device definition is given by a single drawing as in Fig-

In the model that WireLisp uses, each device in a circuit descrip- ure I. The symbol for the device being defined is placed at the
tion is a procedure that describes how it is constructed. When top of the page and corresponds to the procedure head. The in-
a module is used, this procedure is executed to generate an in- terconnected component devices are placed below it and form the
stance of the module. A device procedure may be parameterized body of the procedure. The device symbol contains named con-
and therefore define an entire family of devices. nection points for the input/output signals of the device: These

are the signal parameters of the device. Pins are used to mark the representation of the circuit containing only primitive devices
connection points in the device symbol, and the device definition connected as specified in the WireLisp program. For example,
provides the parameter name for each pin. General parameters, at the University of Washington we use WireLisp both to design
both mandatory and optional, are simply listed next to the device CMOS circuits in standard SIM or COSMOS format, and to
symbol. perform board-level design. However, a WireLisp program might

The device symbols appearing in the procedure body each just as well build an in-core representation of the circuit or make
corresponds to a procedure call. The names of the wires con- entries directly into a design database like Berkeley OCTS1. The
necting these symbols via connection points are passed as the flexibility of a procedurally based description allows the general
corresponding actual parameters to these procedure calls. Device WireLisp framework to be used for a wide variety of applications
instances may specify optional parameters that do not appear in with only a small amount of additional work.

the device definition, in which case they are ignored. This allows
the designer to attach arbitrary information to a device instance Signals
which may or may not be used in the current context. For exam-
pie, the designer can include layout information which is ignored Simple signals in WireLisp correspond to wires in a circuit com-
by a definition that generates a netlist. municating values between devices. At higher levels of abstrac-

Signal wires are represented as simple lines in the drawing tion, it is convenient to group related signals together and refer to

and are named by closely placed text. The signal wires appear- them collectively as a unit. Examples include busses, control sig-

ing in the procedure body must either be a formal parameter, i.e. nals and dual-rail values. WireLisp allows signals to be grouped
an input or output signal, or be declared locally. Defining sig- together into complex signals called cables. A cable comprises an

nals locally allows irrelevant information to be hidden from the ordered set of signals which can be referenced collectively by the
surrounding context. Unnamed wires are automatically declared name of the cable, or individually via an acesu mechanism. Ca-
as a local signals and assigned uniquely derived names. Different bles are created via a local declaration which declares the cable
wires with the same name are considered to be the same wire, and component names. Alternatively, cables can be created dy-

and naming a wire more than once creates aliases for that signal. namically '. bundling together a set of already declared signals

Lisp expressions may be used anywhere in a drawing and are using the ca ole operator. Cables are allowed to have hierarchi-
included in the device procedure as they appear in the drawing. cal structure so that components may be either simple signals or

The most commonly used Lisp expressions are conditionals, loops cables.
and arithmetic operations; however, any Lisp function can be WireLisp provides two different ways to access the compo-

used, including those defined by the user. General Lisp functions nents of structured signals: records and busses, corresponding

can appear either as text or as graphics symbols that operate over to records and arrays in conventional languages. Records use

variables and signal values. Conversely, circuit drawings may be named selectors to access elements in a cable while busses are in-

used within Lisp expressions. This is done by enclosing the circuit dexed. WireLisp separates the physical structure of a cable from

drawing with a named rectangle and referencing this name in a the access mechanism used to access lta component. 'ns a

Lisp expression. Figure 1 contains an example of this: The if structured signal may be referenced in different ways in different

conditional is used to generate one of two circuits depending on devices. For example, one device may number the components

the size of the input values, of a bus from 0 to 15 while another numbers them I to 16.

Branch points can occur in the hierarchy if there are alter- Cables may be defined either textually or graphically as shown

native definitions of a device. Design alternatives are easily im- in Figure 3. Cables are accessed in a straightforward way so that

plemented in WireLisp by using a conditional statement in the any component in the structure tree can be referenced. For ex-

device definition. For example, a global style variable could be ample, syseus control refers to the three signa!s R/V, STROBE,

used to choose among a number of different types of output. For and ACK and sysBus.ADDRESS(233 refers to the high-order ad-

simulation, a composite device may be implemented as a func- dress bit.

tional model while for a netList, its details would be completely When a cable is passed as a parameter to a device, an access
tineadel wstructure must be defined in order to access its components. De-generated.

The result of executing a WireLisp program can be df ned by vices only need to declare access to components used within the

the user. However, the user will typically use library procedures device, leaving the rest hidden. WireLisp dynamically checks to

for a particular technology and a standard output representation make sure that the structure used to access a cable matches the

of the circuit. The most common use of WireLisp produces a flat actual physical structure of that cable. In some cases a high-level
device may connect two subdevices together with a cable without
knowing how large the cable is. In this case, the definition of the
size of the cable can be delayed until a subdevice is called and

CoNTOL explicitly defines it. This delayed binding provides a convenient
way to specify generic modules.

Cable declarations and expressions often contain long lists of
DRES similar names. WireLisp provides a simple mechanism, called

the iterator, for describing such lists of names succinctly. Itera-
DATA 2tors are merely syntactic shorthand used to reduce the amount of

repetitive information in a drawing. An iterator occurring in a

(sysus (s, (ccNTROL SN R/W sTosR ACK name causes that name to be expanded into a list of names.
(ADDRESS (BS 0 23)) An iterator has the form ni:n2, where ni and n2 are maxi-
DATA (BSs 5 32) mal substrings of digits appearing in the string. For example.

dat&t6:31ll contains the iterator 16:31 which expands to the

list datastH datatTil datalr ... data.3ll.Figure 3: Graphical arid teztual declarations of structured signals.

Behavioral Information in WireLisp name of the root device to be executed. As component device
procedures are called, the corresponding drawing programs are

While much of a digital system is best described structurally, automatically reanalyzed if they have changed and the device
there are parts of complex systems which have no obvious struc- procedures autoloaded. This automatic dependency analysis al-
ture but whose input-output behavior is easy to describe. Con- lows designs to be quickly modified and recompiled without any
trol logic is an example of a module whose specification is better explicit information from the designer.
given behaviorally, for example as a finite state machine. The current implementation executes WireLisp programs at

Behavioral modules are incorporated into WireLisp descrip- the rate of about 200 devices/second for moderately complex
tions by invoking synthesis tools to generate an implementation CMOS circuits on a Sun-3/260 with 8MB of memory. This means
in the form of a WireLisp procedure. By having the behavioral that even a large circuit with 100,000 transistors can be processed
part of the system integrated with the structural desription, the in about 10 minutes.
system can be designed, evaluated and implemented as a whole. Future plans for WireLisp include writing functions to make
For example, as an architectural description is being evaluated it easier to incorporate behavioral descriptions and investigating
using simulation, the description of the behavioral modules can ways to incorporate physical design information for VLSI module
remain at the abstract level and simulated functionally. As the generation. This latter information could be used to drive a chip
implementation is being detailed, the behavioral description can assembler directly from a WireLisp description.
be mapped into a gate or transistor implementation.

Including behavioral modules in a WireLisp description is
straightforward. A module is created with ,he appropriate input- References
output signals and an implementation that refers to the behav-
ioral description external to WireLisp. For example, the behavior [1] J-L. Baer, M. Liem, L. McMurchie, R. Nottrott, L. Snyder,
may be given as a set of logic equations, a finite state machine de- and W. Winder. A notation for describing multiple views of

scription in a high-level language, or a state diagram. WireLisp vlsi circuits. In Proceedings of th f5th Design Automation

depends on other tools to translate this description into an ap- Conference. IEEE, June 1988.

propriate WireLisp procedure. For example, a PLA description (21 R. Barth and B. Serlet. A structural representation for VLSI
might be translated into a functional model for simulation or into design. In Proceedings of the 25th Design Automation Con.
a WireLisp description of a PLA circuit implementation. This ference. IEEE, June 1988.
mechanism of incorporating externally described modules allows
WireLisp to take advantage of the wide range of synthesis tools (3] R. Barth, B. Serlet, and P. Sindhu. Parameterized schemat-
available with very little additional effort. ics. In Proceedings of the 25th Design Automation Confer-

ence. IEEE, June 1988.
WireLisp Implementation (4] J. Batali, N. Mayle, H. Shrobe, G. Sussman, and D. Wes.
There are a range of possible implementations of WireLisp de- The DPL/Daedalus design environment. In VLSI '81, pages
pending on how closely the drawings and their interpretations are 183-192, 1981.
bound. We describe here the current implementation of WireLisp
which uses a generic drawing program and an interpreter written [5] Derek Beatt , Karl Brace, Hu andal E. Bryant, Kyeongsoon
in the T dialect of Lisp[Ill. Cho and Lawrence Huang. User's Guide to COSMOS: a

WireLisp drawings are made using xdp[7], a version of a COmpiled Simulator for MOS circuits. Carnegie-Mellon
generic drawing editor developed at Carnegie-Mellon University University, July 1988.
that runs on Sun and MicroVax workstations. xdp supports a (6] Edmund M. Clarke and YulIn Feng. Escher-A geometrical

variety of graphic objects including lines, text, circles, arcs and layout system for recursively defined circuits. IEEE Trans.
spline curves. xdp provides some help with circuit drawing with actions on Computer Aided Design, 7(8):908-918, August

respect to connecting lines used as wires, but otherwise does not 1988.
understand the semantics of circuit drawings. An analysis pro-
gram which does understand these semantics converts WireLisp [7] D. Giuse. DP: A drawing program. Technical report, Coin-

drawings into WireLisp procedures. The designer, however, only puter Science Dept., Carnegie -Mellon University, 1982.

interacts with the circuit specification via the drawings. [8] P. S. Harrison. P. Moore, R. L. Spickelmier. and A. R. New-
xdp has a macro concept whereby a group of related objects ton. Data management and graphics editing in the Berkeley

can be bound into a single named object called a symbol. Sym- design environment. In Proceedings of ICCAD, pages 24-27.
bols in WireLisp drawings correspond to devices, and connection IEEE, November 1986.
points within devices are represented by xdp pins around the pe-
riphery of the device. Making a device definition involves defining (9] C. Kingsley. Earl: A language for integrated circut design.

a symbol for the device, copying in the symbols of the component PhD thesis, California Institute of Technology, 1981.
devices from the drawings in which they are defined, and then
connecting them using lines attached to their pins. (10] Robert Mayo. Mocha chip: A system for the graphical design

xdp allows the designer to move about conveniently in the of VLSI module generators. In Proceedings of the ICC.4D,

hierarchy of a design by allowing devices to be 'subedited". This pages 74-77. IEEE, November 1986.

causes the current drawing to be suspended and replaced by the [II] Stephen Slade. The T Programming Language: .4 Dialect of
drawing for the device being subedited. Editing of the suspended Lisp. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
drawing is resumed when the subedit is completed. Subeditting
is allowed to any depth. [12] Christopher J. Terman. Simulation Tools for Digital LSI

The execution of WireLisp procedures resulting from the anal- Design. PhD thesis, Massachusetts Institute of Technology,
ysis of the dawings is performed by an interpreter written in T October 1983.
Lisp. This is done by entering the interpreter and specifying the

